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The relative equilibria of a material point in a uniformly rotating frame of reference are investigated. 

Along with potential forces, which depend on the relative coordinates, and forces of inertia, allowance 

is made for small resistive forces that depend on the absolute velocity of the point. These forces cause, 

first, a shift of the equilibrium and, second, a change in the characteristic exponents compared with the 

conservative case. Necessary and sufficient conditions are established for asymptotic stability. These 

conditions hold, in particular, in systems that are stable in the fist approximation when there is small 

viscous friction. For the first time, asymptotically stable cases are established for triangular libration 

points in the classical three-body problem taking into account the resistance of the medium. 

1. THE SHIFT OF EQUILIBRIUM IN A RESISTANT MEDIUM 

The solution of several problems in theoretical and celestial mechanics involves investigating 
the equilibrium of a material point relative to a frame of reference rotating at a constant 
angular velocity o about a fixed axis OZ. The force function of the system U =U(X, y, z) 
depends only on the relative coordinates. The equations of motion in vacuum (assuming a unit 
mass) are 

i=gradU+P, +Pc, r = (&y,z)r, P, = 02r - (0, r)o 

P c = -20 x r, 0 = (0, 0,o) 
(1.1) 

where P, and P, are the translational and Coriolis forces of inertia [l]. 
In a position of relative equilibrium we have r = q, i = i: = 0, so that 

grad U’I,=, =o, lJ’=U+~0*(X*+y2) (1.2) 

Together with system (1.1) we shall also consider a more realistic model, in which allowance 
is made for a small resistive force exerted by the medium, in the direction opposite to that of 
the absolute velocity V of the point 

r=gradU+P,+P,+S 
(1.3) 

s = -f( V)V, V=i+oxr, f(Vo)=E4a, Vo=oXro 

Below we present a comparative analysis of system (1.1) and (1.3) in order to establish the 
existence of points of equilibrium and stability. 
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To determine the position of equilibrium of system (1.3), we set r = r* = q + Ar, i = i: = 0, 
obtaining 

grad U’I r=r* = f(v*>v*, v’ = ox r* (1.4 

When there is no resistance, f = 0, and system (1.4) is satisfied when Ar = 0 (i.e. r* = q). This 
solution is unique if the second variation of the varied force function 

u, =1162U’/6r211,,, 

is non-degenerate, in which case the position of equilibrium (1.2) of system (1.1) is isolated. In 
that case system (1.4) has a unique solution in the neighbourhood of b 

Ar = EU;~(U x r,,) + 0(tz2) (1.5) 

Note that if r, is on the axis of rotation, the relative equilibrium is also absolute, so that Ar 3 0. 
The following assertion can be proved 

Assertion 1. Assume that the Hessian of the function U+~$~I?(X~ +y”) does not vanish at the 
position of equilibrium (1.2). Then, if E > 0 is sufficiently small, the resistive forces (1.3) 
displace the position of equilibrium by the distance Ar given by (1.5). 

2. STABILITY IN THE CASE OF PROPORTIONAL RESISTANCE 

Let us investigate the stability of the position of equilibrium of system (1.3). We note first 
that system (1.1) is a generalized conservative system, since the forces of inertia P, and PC have 
the structure of linear potential and gyroscopic forces, respectively. A necessary condition for 
the stability of the system is therefore that the linear system 

0 -0 0 

i;+2*-U,p=O; p=r=ro, R= 0 0 0 (2.1) 
0 0 0 

should have only pure imaginary characteristic exponents h, (j = 1 - 6). 
Let us linearize system (1.3) in the neighbourhood of the point r* (retaining the notation p 

for the difference r * -r) 

i;+2ni,-u;p-dS=o (2.2) 

where Vi is the second variation of U’ and dS is the differential of the vector-valued function S 
evaluated at r*. As E --+O Eq. (2.2) tends to (2.1), and the continuous dependence of the 
characteristic exponents on the parameter implies the following. 

Assertion 2. A necessary condition for the equilibrium in a medium with small resistance to 
be stable is that the equilibrium (1.2) in a vacuum should be stable in the first approximation. 

To obtain the sufficient conditions for stability in system (2.2), one might at first sight try to 
apply the Kelvin-Chetayev theorems [2] on the effect of dissipative and gyroscopic forces on 
the stability of a conservative system. However, formulae (1.3) show that the expression for the 
dissipative force S in terms of relative coordinates and velocities contains terms of a different 
structure. 

Consider, in particular, the case when f= const, which is typical for forces of viscous 
friction. In that case 
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s = -EV, ds = -&(fi+Rp) (2.3) 

The first term in dS has the form of linear dissipative forces, and the second represents 
positional non-conservative forces. It was observed in [3], when studying uniform rotations of 
a rigid body, that forces of dissipative structure in an absolute reference system may have a 
positional component in the attached system. 

Theorem 1. In the case of proportional resistance (2.3), a sufficient condition for the equili- 
brium position of system (1.3) to be stable is that the characteristic exponents of system (2.1) 
should be pure imaginary and different from one another. 

Proof. The characteristic equation of system (2.2) is 

F(h, E) = detll(h* + &h)Ey + (2h + &)Q - U;II = 0 (2.4) 

Let h; (j= l-6) denote the roots of the equation 

detllh*& + 2hQ - (/$I = 0 

By assumption, if E is sufficiently small, then Reh; = 0 and h; #A; for k f j [3]. In view of the 
structure of F(h, E) as shown in (2.4), we obtain 

Hence the roots of Eq. (2.4) may be written as 

&j(E) = iii - &/2 + O(&*) (2.5) 

When E >O we have Reh, < 0 in (2.3), implying the desired conclusion about asymptotic 
stability in the first approximation. 

Note that the theorem does not require the unperturbed system (1.1) to be stable in 
Lyapunov’s sense. 

3. STABILITY CONDITIONS FOR NON-LINEAR RESISTANCE LAWS 

We will now investigate an arbitrary law of resistance, assuming that the function fin (1.3) is 
positive and differentiable. Linearization of system (2.1) produces additional terms in formula 
(3.1). Since 

s -s* =flV)V’-flv)v =flV)(V’- V) +f’(V)(V - v)v* + o(V’ - v) = 

= -&(6+~XP)+f’(Vo)[(W,rg)(0,p)-0*(r0,p)-(V0,6)]V0 / VO+... 

(omitting terms non-linear in p and p, as well as quantities of order O(E’)), it follows that if 
f’(u,) f 0 the expression for dS in (2.2) will have the following form, provided the origin is 
suitably chosen (so that (w, q) = 0) 

dS = -E( Dr; + Kp + Np) (3.1) 

D=E+T 2Y 

Yo2 -XoYo 0 - 2XoYo x,2-y; 0 

-xoyo x; 0 , -Yo2 2XoYo 0 
r, 

0 0 0 0 0 
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N=(l+y)R, y= v,f’(v,) 
2fwi_l) ’ 

r; = x0’ + y; 

The parameter y is determined by the type of resistance (y = 0 for proportional resistance, 
y = ): for a square law, y = -X for resistance independent of the absolute value of the velocity, 
etc.). 

The first term in (3.1) has the structure of linear dissipative forces (total dissipation if 
y >-X), the second, of potential forces, and the third, of non-conservative positional forces. 

Theorem 2. Assume that the matrix U, is negative definite and that y lies in the interval 
(-X, 1). Then the equilibrium position of system (1.3) is asymptotically stable, provided E is 
sufficiently small. 

Proof. The assumptions of Propositions 1 and 2 all hold. In addition, by one of the Kelvin- 
Chetayev theorems, equilibrium in a vacuum is stable in Lyapunov’s sense. Let us construct a 
Lyapunov function for the system with friction (3.1) 

L=(p,(EK-u;)p)+(6,6)+E(l+Y)(b,P) (3.2) 

This quadratic form is positive definite for sufficiently small E; its total derivative with respect 
to time along trajectories of Eqs (2.2) and (3.1) is 

(3.3) 

An easy check will show that, under the above restrictions on the parameter y, the function 
(3.3) is negative definite, implying the required asymptotic stability. 

Of the two assumptions of Theorem 2, the basic one is the restriction on the matrix II,, since 
in real mechanical systems the resistance of the medium is characterized by the coefficient 
y E [0, X]. If U, is positive definite or has one positive eigenvalue and two negative ones, the 
necessary conditions for stability fail to hold. In the case of two positive and one negative 
eigenvalues, the assumptions of Theorem 2 do not hold, but those of Assertion 2 may be 
satisfied (gyro-stabilization). This case will be considered below. 

Lemma. Let F(h, E) be a polynomial of even degree in h with real coefficients which are 
continuously differentiable with respect to a parameter E. Assume that the equation F(h, 
E) = 0 has only pure imaginary roots when E = 0. Then the real parts of the roots when E f 0 
are given by the formula 

(3.4) 

(the subscript indicates partial differentiation). 
This assertion follows from the theorem of implicit functions and the fact that F(h, 0) is an 

even function. 
We shall use formula (3.4) to analyse the asymptotic stability of the origin in system (2.2). 

The characteristic equation, in the notation of formula (3.1), is 

F(h, E) = detllh2E3 + 2hn - U; + E(D~ + K + N)II = 0 (3.5) 

If the assumptions of Assertion 2 are satisfied, we can use the lemma to estimate the roots of 
Eq. (3.5) and determine ermine whether they lie in the left half-plane. 

We will first consider an important special case in which this test is considerably simplified. 

Theorem 3. Assume that (1) the matrix U, has an eigenvector parallel to the axis of rotation 
02; (2) the corresponding eigenvalue a, is negative; (3) the vector q is orthogonal to OZ. 
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Then a sufficient condition for asymptotic stability is that 

D = [‘&* - l/2(4 + a*)]* - ala2 > 0, UlU2 > 0, 2w2 - ‘/*@I + U2) ’ o 

(3.6) 

where a, and a, are the two other eigenvalues of U,. If at least one of inequalities (3.6) is true 
with reversed sign, the equilibrium is unstable. 

Proof. It is obvious that the third condition may always be ensured by suitable choice of the 
origin. In addition, a rotation of the X and Y axes will ensure that U, will have a diagonal form 
U, =diag{a,, 4, 4). The characteristic polynomial (3.6) factorizes into the product of a 
trinomial h*+eEh-% whose roots lie in the left half-plane when E ~0 is small and a fourth- 
degree polynomial 

F,(h,&) = det 
II 

A2 +&h-u, +y’(hy2 -O.uy) -(2h+&)W-Y*(6Iy* +k.xy) 

(2h + &)W+ y*(ox* - A&QJ) A2 +&h-a, +y*@x* +wy) I 
(3.7) 

r’ = 24 

When E = 0 we have 

F,(h, 0) = (A* - u&h* - u2) + 4h*d (3.8) 

The roots of this polynomial are purely imaginary and pairwise distinct if and only if the 
second group of inequalities (3.6) holds, in which case 

2 
Al.*(O) = l/2(u1 + u2) - 20~ f D K (3.9 

Substituting this expression into (3.4), we get 

which is equivalent to the first inequality of (3.6). 

Corollary. If U, is negative definite and the first assumption of the theorem holds, then the 
equilibrium position is asymptotically stable for all y > -1. 

Indeed, in that case the right-hand side of inequality (3.6) is at most Ir(a, -a~) I/2, while 
D * (4 - 4)’ 14. When y > -1 inequality (3.6) is surely true. 

This result completes the conclusions of Theorem 2. 

4. TRIANGULAR LIBRATION POINTS IN A RARIFIED MEDIUM 

The classical circular restricted three-body problem admits of Lagrange’s solutions, which 
are also known as triangular points of libration (see [5]). Corresponding to these solutions are 
relative equilibrium points of a material point in a frame of reference rotating together with 
the main attracting bodies. The equations of motion in a vacuum have the form of (l.l), where 
p is the mass ratio of the main bodies 

W=l, ro=(f-p.$,O], U,= 2 % _p , k=$(1-2p) 
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The conditions for stability in the first approximation (the first group of inequalities (3.6)) 
are satisfied in the range 0 < u c u* = 0.03852. . . . The low resistance of the medium affects the 
motion of the three bodies to different degrees: the resistance is proportional to the square of 
the diameter and the mass to the cube of the diameter; hence the acceleration is inversely 
proportional to the diameter. In the restricted formulation, therefore, we may disregard the 
influence on the motion of the main bodies. 

The displacement of the point of libration L4 is determined by formula (1.5) 

Ar = eU;irc = ~(-36 (1 - /.t + p2), 3( 1 - 2p), 0)(27/B - 2k2)-’ (4.1) 

Figure 1 illustrates the following: the effect of friction is to shift the point of libration in the 
direction of the rotation; since the angle between the vectors r, and Ar is obtuse, we have 
lr*l<lr, I. 

Theorems 1 and 3 imply that the shifted point of libration is asymptotically stable for certain 
laws of resistance. The result is quite unexpected, since as yet the only known stability results 
in the three-dimensional problem, when there is no resistance, are stability for the majority of 
the initial conditions and formal stability in the non-resonant case, and also instability for 
resonances of the third and fourth order [5]. The stabilizing nature of the forces of friction, 
which are intrinsically dissipative, is conditioned here by the existence of the “gratuitous” 
source of energy provided by the main bodies, appearing as non-conservative positional forces. 

The first condition of (3.6) is equivalent to a single inequality 

y+l> L_ 216-17(40-l) D_)4 D=l-27~(l-~) E 

w 2 108+4(40-l) ’ 4 (4.2) 

The domain of asymptotic stability in the plane of the parameters u and y is shown in Fig. 2. 
In particular, in the case of a proportional resistance law (y = 0) the shifted libration point is 
asymptotically stable for all u E (0, u*); for the case of a square law (y = M or resistance 
proportional to the square root of the velocity (y = -x), it is unstable. In the intermediate case, 
there is a range of asymptotic stability u E (0, u(r)). 

Fig. 1. Fig. 2. 
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5. RELATIVE EQUILIBRIUM OF A NON-FREE PARTICLE 

The above results may be extended to the case of a particle moving over a surface 

z = cp(xt Y) (5.1) 

Assuming that the constraint (5.1) is ideal, let us set up the equations of relative motion in 
Lagrangian form. We have expressions for the kinetic energy T, the new force function U, and 
the generalized forces Q in terms of the generalized coordinates X, y and their derivatives 

T =xV* =H[(cp; +l)i* +2cp,rp,ij~+(rp; +l)j~*]+o(+yi)+ (5.2) 

+&&X2 +y*j, v, (4 Y) = WA Y9 cpC% Y)) 

Q,=&+vA Q,=s,+~,A 

where cp,, ‘p,, are the partial derivatives of the function (5.1) and S,, S,, S, the components of 
the resistance vector S. 

The Lagrange equations of the second kind, in matrix notation, are 

Bi + ( iBx + jB,, )i - y2 grad( Bi, i) + 2fX - grad V’ = Q 

V’=V, +J@w, r=(x,y) 

(5.3) 

where B, and BY denote the partial derivatives of B. 
If S= 0, the equilibrium position q is determined from the condition (1.2) for U’ to be 

stationary. The presence of a resistance (1.3) in formulae (5.2) gives 

Q = -f(V)(Bi+Rr) (5.4) 

By analogy with (1.5), one obtains the following formula for the displaced equilibrium under 
the action of a resistive force (5.4) 

Ar = &V;‘&2r0 + O(E*) (5.5) 

This formula holds provided that the Hessian of the function U, +~oz(x2 + y") does not 
vanish at r = x,. 

When checking for stability in the first approximation, one ignores the second and third 
terms in Eq. (5.3). If SE 0, the characteristic equation is 

detllBh* + 2Rh - VJI = 0 (5.6) 

For a proportional law of friction S = -EV the characteristic polynomial is similar in form to 

(2.4) 

&E, h) = detll(A* + Eh)B + (2h + E)Q - V*211 = 0 

Repeating the proof of Theorem 1, we obtain the following theorem. 

Theorem 1’. If Eq. (5.6) has only simple purely imaginary roots and the proportional 
resistance if sufficiently small, the shifted position of equilibrium of the particle on the surface 
(5.1) is asymptotically stable. 
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For an arbitrary law of resistance, one can apply the method used to prove Theorem 3, since 
in that case Eq. (5.6) is biquadratic. The result is as follows. 

Theorem 3’. If Eq. (5.6) has only simple purely imaginary roots and the resistance is 
characterized by a parameter y, the asymptotic stability criterion is 

(5.7) 

D = [202/Aa - (ai + a2)/212 - ala2 

where &, 2 are the eigenvalues of the matrix B-‘U,, AB = det II B II. 

Corollary. If U, is negative definite, the equilibrium position is asymptotically stable for all 
y>-1. 

The proof is similar to the proof of the corollary to Theorem 3. 

Example (“centrifuge”}. A heavy sphere is moving over a surface that is rotating at a constant angular 

velocity o about the Z axis, as described in relative coordinates by the equation 

z=cp(x,y)=x2+ax3+py2, a>O, p>0 

Putting the acceleration due to gravity equal to unity, we write the condition of equilibrium in a 
vacuum as 

System (5.8) has an isolated solution 

x0 = (w2- 2)/3a, YO=O (5.9) 

Let us assume that the sphere experience a resistive force due to the air, proportional to the square of the 

velocity (y = X). Then the shift of the equilibrium may be computed by formula (5.5) where U, = 

diag(2= a?, o2 -2p). The matrix U, is invertible if o* # 2 and w2 # 2p, in which case 

Consequently, in the first approximation the shift occurs in a plane x = const, and moreover, if 

detU, >O, it occurs in the direction opposite that of the rotation; otherwise the direction is that of the 
rotation. 

The necessary condition for stability holds only in the first of these two cases, and then, if 

p>02/2> 1 (5.10) 

then by Theorem 3’ the shifted equilibrium is asymptotically stable. 
If the double inequality (5.10) is true in the opposite sense, the necessary conditions for stability are 

p>1-23, (p-1+202)2>(02-2)(2p-w2) (5.11) 

We have expressions for the matrix B and the eigenvalues aI3 

B = diag( 1 + rn4& 1 ), al = 9a2(2 - d)[9a2 + w4(d - 2)2]-1, a2 = 3 -2P 

Figure 3 shows the domain of stability in the plane of the parameters g, o* on the assumption that 
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D 423 I I 

Fig. 3. 

a = 1. The domain is the union of an infinite sector 1 in which the sufficient conditions (5.10) hold and a 
curvilinear quadrilateral 2 in which inequalities (5.7) and (5.11) hold. 

Note that the equilibrium position (5.8) is stable in a vacuum in sector 1, and in addition the necessary 

conditions (5.11) for its stability hold in a curvilinear quadrilateral slightly larger than 2, bounded below 
by the curve 8=-1-~~+20(2-w~)~‘~. 

We shall discuss one more case of constrained motion: suppose the particle is forced to remain on a 

curve whose equation in relative coordinates is 

y = Y(x). z = z(x) (5.12) 

The equation of motion may be set up by analogy with (5.2) and (5.3) 

Bi+~B’.i2cw2(x+yy’)-U; =Q 

B=l+y’2ix)+&), U, = U(x,y(x),z(x)), Q= Sx +y’Sr +z’Sx 

(5.13) 

The condition for equilibrium in a vacuum is 

The shift of the position of equilibrium is determined from the formula 

Ax = EWLQ (yoyi, - x0 ) + O(E), u, =u;(x(-J)+w2(1+y()y~+y~2) 

which holds provided that U, # 0. 
Since system (5.13) has only one degree of freedom, gyrostabilization is impossible, and the position of 

equilibrium x = x0 is stable if U, < 0 and unstable if U, > 0. In the first approximation, the resistance Q is 
the sum of potential and dissipative linear forces. By the Kelvin-Chetayev theorems, if y > l/2, the 
stability in a vacuum implies asymptotic stability in a resistive medium. When U, >O the shifted equili- 

brium is also unstable. 

The research reported here was supported financially by the Russian Fund for Fundamental 
Research (93-013-17228). 
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